

Reduced pesticide doses: Experiences in the Nordic-Baltic region and risk of selecting for resistant biotypes Per Kudsk & Lise Nistrup Joergensen Department of Agroecology

Aarhus University, Denmark

SUSTAINABLE USE OF PESTICIDES AND INTEGRATED PEST MANAGEMENT IN EAST-CENTRAL EUROPE AND THE BALTICS

Content of presentation

- > Background
- > Experiences with reduced herbicide doses
- > Experiences with reduced fungicide doses
- > Dose and risk of resistance

SUSTAINABLE USE OF PESTICIDES AND INTEGRATED PEST MANAGEMENT IN EAST-CENTRAL EUROPE AND THE BALTICS

Background

- Interest in reduced doses dates back to the 70'ies
- Denmark and Sweden were the first countries in Europe to implement a pesticide action plan (mid 80'ies)
- The pesticide action plans increased the interest in reduced doses (considered the easiest and least risky approach to meet the target)
- Experiences from Denmark and Sweden was adopted by other countries in the Nordic-Baltic region

SUSTAINABLE USE OF PESTICIDES AND INTEGRATED PEST MANAGEMENT IN EAST-CENTRAL EUROPE AND THE BALTICS

Herbicides

Herbicide performance is affected by many parameters such as:

- > weed flora
- > growth stage of weeds
- > crop competitiveness
- > climatic conditions
- > application technique
- > formulation
- > the presence of other pesticides in the spray solution

SUSTAINABLE USE OF PESTICIDES AND INTEGRATED PEST MANAGEMENT IN EAST-CENTRAL EUROPE AND THE BALTICS

Crop Protection Online

<mark>ersion</mark> eeds - Recommen	dations for co	Free den ntrol ∢⊧	no, conditions for use 0	11.1 2007 Pl@nteln
onditions for c	alculation:			Season plan
Сгор				
Crop Whe	at winter	🖌 Undersown	None 🔽	
		Season	Spring and summer 🛛 😵	
		Expected yield	50-75 hkg/ha 🛛 🖌	
Growth stage		27. 7th shoot visib	le 🔽 🔿	
Growth conditions Min.temp. 8°C 💙 Needs found by field	Max.temp.	14°C 🔽 🧭		
Growth conditions Min.temp. 8°C v Weeds found by field Weed species ()	Max.temp.	14°C 🔽 🕢 Growth stage 🚱	Density 🚱	Control level @ Delete
Growth conditions Min.temp. 8°C Y Weeds found by field Weed species () Com Chamomile	Max.temp.	14°C 🔽 🕢 Growth stage 🥝 5-6 leaves	Density ☺ ▼ 11 - 40 pl./m²	Control level
Growth conditions Min.temp. 8°C V Weeds found by field Weed species () Corn Chamomile Common Chickwe	Max.temp. Inspection	14°C 🕜 🥥 Growth stage 🥝 5-6 leaves >6 leaves	Density Ø ✓ 11 - 40 pl./m² ✓ ✓ 41 - 150 pl./m² ✓	Control level @ Delete
Growth conditions Min.temp. 8°C V Weeds found by field Weed species () Corn Chamomile Common Chickwe	Max.temp.	14°C 🖌 🍘 Growth stage 🎱 5-6 leaves >6 leaves Select	Density Ø ✓ 11 - 40 pl./m² ✓ ✓ 41 - 150 pl./m² ✓ ✓ Select ✓	Control level @ Delete
Growth conditions Min.temp. 8°C Weeds found by field Weed species Corn Chamomile Common Chickwe Select Water stress	Max.temp.	14°C 🗸 🍘 Growth stage 🎯 5-6 leaves >6 leaves Select None	Density Ø ✓ 11 - 40 pl./m² ✓ ✓ 41 - 150 pl./m² ✓ ✓ Select ✓	Control level @ Delete

SUSTAINABLE USE OF PESTICIDES AND INTEGRATED PEST MANAGEMENT IN EAST-CENTRAL EUROPE AND THE BALTICS

Herbicides-Denmark (130 trials in spring barley)

SUSTAINABLE USE OF PESTICIDES AND INTEGRATED PEST MANAGEMENT IN EAST-CENTRAL EUROPE AND THE BALTICS

Herbicides-Sweden

- Two trial series (10 locations) in spring cereals (1987-1997 & 1988-1997)
- Reduced doses and guideline recommendations compared with standard treatments
- > One herbicide

SUSTAINABLE USE OF PESTICIDES AND INTEGRATED PEST MANAGEMENT IN EAST-CENTRAL EUROPE AND THE BALTICS

Herbicides-Sweden

- > Weed densities following application of 25, 50, 75 and 100% of the recommended dose was reduced 43, 58, 64 and 67% compared to the control
- Exclusion of herbicides every second year resulted in 43 to 178% higher weed densities than 50% of the recommended dose every year
- > Herbicide dose reduction using guidelines: 30 to 80%
- > No significant yield penalties
- > Weed flora shifts

SUSTAINABLE USE OF PESTICIDES AND INTEGRATED PEST MANAGEMENT IN EAST-CENTRAL EUROPE AND THE BALTICS

Herbicides-Latvia & Estonia

- > 6 herbicides at 25, 50 and 100% of the recommended dose in 2006-2007 (Latvia) and 2005-2007 (Estonia)
- > Reduced doses provided good control
- > Reduced doses most profitable (Latvia)

SUSTAINABLE USE OF PESTICIDES AND INTEGRATED PEST MANAGEMENT IN EAST-CENTRAL EUROPE AND THE BALTICS

Herbicides-Lithuania

□ 2003 ■ 2004 □ 2005

□ 2003 ■ 2004 □ 2005

Kadzys et al., 2008

SUSTAINABLE USE OF PESTICIDES AND INTEGRATED PEST MANAGEMENT IN EAST-CENTRAL EUROPE AND THE BALTICS

Cereal fungicides-Denmark

SUSTAINABLE USE OF PESTICIDES AND INTEGRATED PEST MANAGEMENT IN EAST-CENTRAL EUROPE AND THE BALTICS

Septoria in wheat (73 trials)

Source: Danish Agricultural Advisory Service

SUSTAINABLE USE OF PESTICIDES AND INTEGRATED PEST MANAGEMENT IN EAST-CENTRAL EUROPE AND THE BALTICS

Septoria in wheat

Resistant cultivar

Susceptible cultivar

A: GS 25-31, B: GS 32-36, C: GS 37-50, D: GS 51-64

SUSTAINABLE USE OF PESTICIDES AND INTEGRATED PEST MANAGEMENT IN EAST-CENTRAL EUROPE AND THE BALTICS

Why are reduced doses effective in the Nordic-Baltic region?

- > Herbicides
 - > Competitive crops and many non-competitive weed species
 - > Climatic conditions optimum for maximising herbicide action
 - > Focus on timing
 - > Ample documentation from field trials and effective dissemination
- > Fungicides
 - > Monitoring and thresholds
 - > Focus on timing
 - > Resistant varieties
 - > Focus on net profit
 - > Ample documentation from field trials and effective dissemination

SUSTAINABLE USE OF PESTICIDES AND INTEGRATED PEST MANAGEMENT IN EAST-CENTRAL EUROPE AND THE BALTICS

Does the use of reduced doses increase the of selecting herbicide resistant biotypes?

- Target site resistance (single major gene mutation, high level of resistance)
 - > With a few exceptions the cause of resistance in broadleaved weeds
 - > Also widespread in grass weeds (ACCase and ALS inhibitors)
 - > High doses speed up the selection of resistant biotypes
- Metabolic resistance (multiple minor genes, low level of resistance)
 - > Only found in grass weeds (with one exception)
 - Low doses may result in an accumulation of minor genes in the offspring

SUSTAINABLE USE OF PESTICIDES AND INTEGRATED PEST MANAGEMENT IN EAST-CENTRAL EUROPE AND THE BALTICS

Low doses and metabolic herbicide resistance

16

SUSTAINABLE USE OF PESTICIDES AND INTEGRATED PEST MANAGEMENT IN EAST-CENTRAL EUROPE AND THE BALTICS

Weed species respond differently to low herbicide doses

SUSTAINABLE USE OF PESTICIDES AND INTEGRATED PEST MANAGEMENT IN EAST-CENTRAL EUROPE AND THE BALTICS

Low doses and herbicide performance

- Reduced herbicide doses do often provide effect levels comparable to those of the recommended dose due to:
 - > High susceptibility of the weed species to the herbicide
 - > Optimum time of application
- Omitting the word "dose" and instead using the word "effect level" when discussing the risk of resistance would clarify the discussion

SUSTAINABLE USE OF PESTICIDES AND INTEGRATED PEST MANAGEMENT IN EAST-CENTRAL EUROPE AND THE BALTICS

Effect of epoxiconazole (Opus) on Septoria in Denmark in 2004-2009

SUSTAINABLE USE OF PESTICIDES AND INTEGRATED PEST MANAGEMENT IN EAST-CENTRAL EUROPE AND THE BALTICS

Effect of triazoles on Septoria

dose

SUSTAINABLE USE OF PESTICIDES AND INTEGRATED PEST MANAGEMENT IN EAST-CENTRAL EUROPE AND THE BALTICS

Low doses and fungicide resistance

- Fungi differ from weeds and insect in being haploid or diploids/dikaryons that are largely clonal
- > Recently van den Bosch et al. (2011) reviewed the existing literature and concluded that "high doses will increase the speed at which fungicide resistance develops"

SUSTAINABLE USE OF PESTICIDES AND INTEGRATED PEST MANAGEMENT IN EAST-CENTRAL EUROPE AND THE BALTICS

Conclusions

- Experimental evidence and practical experiences have shown that satisfactory control of weeds and diseases can often be obtained with less than the recommended dose
- > The use of reduced doses fit into the concept of integrated pest management
- No clear evidence that reduced doses increase the risk for selecting resistant biotypes but low effect levels on weed species prone to develop metabolic resistance should be avoided
- Adopting an anti-resistance strategy (herbicide rotation, herbicide mixtures, non-chemical control methods etc.) are more pertinent than focusing on the "dose issue"